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The paper examines the dynamics and stability of #uid-conveying cylindrical shells having
pinned}clamped or clamped}pinned boundary conditions, where &&pinned'' is an abbreviation
for &&simply supported''. FluK gge's equations are used to describe the shell motion, while the
#uid-dynamic perturbation pressure is obtained utilizing the linearized potential #ow theory.
The solution is obtained using two methods * the travelling wave method and the Fourier-
transform approach. The results obtained by both methods suggest that the negative damping
of the clamped}pinned systems and positive damping of the pinned}clamped systems, observed
by previous investigators for any arbitrarily small #ow velocity, are simply numerical artefacts;
this is reinforced by energy considerations, in which the work done by the #uid on the shell is
shown to be zero. Hence, it is concluded that both systems are conservative.
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1. INTRODUCTION

THIN TUBES CONVEYING FLUID exhibit shell-type vibrations, i.e., their motion not only consists
of lateral displacements, but can also involve deformation of the cross-section, the so-called
&&breathing'' modes. This behaviour was discovered by PamKdoussis & Denise in 1969, while
experimenting with thin, short, cantilevered tubes conveying low-pressure air (PamKdoussis
& Denise 1971). Subsequent experiments showed that the new shell-type instability ob-
served for cantilevered tubes (shells) can also occur for clamped}clamped ones. The
dynamics and stability of these shells were also studied theoretically by PamKdoussis & Denise
(1972) using FluK gge's equations and linearized potential #ow theory. The results obtained
matched with the experimental ones that cantilevered shells lose stability by #utter at
su$ciently high #ow velocities; in the case of clamped}clamped shells, which represent
a conservative gyroscopic system according to the theoretical model, stability is lost by
divergence, followed by coupled-mode #utter at a slightly higher #ow velocity. The theore-
tical study of clamped}clamped shells by Weaver & Myklatun (1973) also produced similar
results. The case of simply supported shells was investigated theoretically by Weaver &
Unny (1973) and Shayo & Ellen (1974) with the aid of the FluK gge-Kempner shell equation,
and by Matsuzaki & Fung (1977) utilizing Morley's shell equation. In all cases, linearized
potential #ow theory was used.

The conclusion from these studies is as follows: if the shell is either clamped or pinned at
both ends, it is a conservative system and the frequencies remain real (i.e., there is no
sA partial, abridged account of this work was given at the Canadian Congress of Applied Mechanics, Memorial
University, St. John's, Newfoundland, Canada, in June 2001 (Proceedings, CANCAM 2001, Vol. 1, pp. 35}36).
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damping), until a certain critical #ow velocity is reached where the system loses stability by
divergence when the lowest frequency becomes purely imaginary. This is followed by
coupled-mode #utter at a slightly higher #ow velocity.

In all the studies discussed so far, shells with supported ends had the same support
condition at both ends: either clamped or simply supported. The dynamics in cases of mixed
support conditions, i.e., shells clamped at one end and simply supported at the other
(&&clamped}pinned'' and &&pinned}clamped'' in short, the "rst word in each case referring to
the upstream end and the second to the downstream one) were studied for the "rst time by
HoraH c\ ek & Zolotarev (1984) and Zolotarev (1987).

In the "rst of these two papers, Vol'mir's semi-membrane shell theory was used, which is
similar to Donnell's and Morley's, involving only one equation in which most of the higher
derivatives with respect to the axial coordinate are absent. In Zolotarev (1987), the
Goldenveizer}Novozhilov equations are used, which are similar to FluK gge's, but di!er in
some details; the ends are supported by translational and rotational springs so that, by
setting the values of appropriate spring constants to zero or in"nity, various simple
boundary conditions (clamped, pinned, free, etc.) can be obtained. The perturbation pres-
sure was expressed in travelling-wave form and the method of solution was similar to that of
PamKdoussis & Denise (1972).

Calculations by Zolotarev with clamped}clamped, pinned}pinned and cantilevered shells
showed qualitatively similar behaviour to that obtained in the previous studies. However,
clamped}pinned and pinned}clamped shells, which had not been studied earlier, displayed
unusual behaviour. Both pinned}clamped and clamped}pinned shells were found to behave
as nonconservative systems, although they are conventionally considered as conservative.
For a pinned}clamped system, the imaginary part of the complex frequency was found to be
positive, implying #ow-induced damping, for all values of #ow velocity starting from zero,
to the critical value when the shell loses stability by divergence. On the other hand,
calculations by PamKdoussis et al. (1993) using FluK gge's equations in conjunction with the
standing-wave Fourier-transform theory have shown that pinned}clamped shells conveying
#uid have a purely real frequency (i.e., no damping) for any #ow velocity lower than the
critical velocity (for divergence). The question then arises as to which one of these two
theories describes the dynamics correctly.

An even more perplexing feature in HoraH c\ ek and Zolotarev's calculations is the fact that,
for clamped}pinned shells, the imaginary part of the complex frequency is negative,
implying negative damping, i.e., instability, for any #ow velocity greater than zero! This is, of
course, consistent with HoraH c\ ek and Zolotarev's results for pinned}clamped shells de-
scribed earlier. A clamped}pinned system may be considered to be a pinned}clamped one
with the #ow direction reversed. A change in the sign of the #ow velocity causes a change in
the sign of the imaginary part of the complex frequency; thus, a positive damping for
pinned}clamped systems implies a negative damping for clamped}pinned ones. However,
this is at variance with calculations by PamKdoussis et al. (1993), who have found the
clamped}pinned system to be stable, until stability is lost by divergence.

The goal of the present paper is to resolve this apparent paradoxical behaviour of
pinned}clamped and clamped}pinned systems.

2. THEORETICAL MODEL

A careful examination of the dynamics of shell systems with mixed boundary conditions is
carried out using two di!erent theories: the standing-wave Fourier-transform theory
developed by PamKdoussis et al. (1984) and the travelling wave theory presented by PamKdoussis
& Denise (1972). In both theories, FluK gge's equations are used to describe the motion of the



Figure 1. The shell under consideration with some parameters de"ned.
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shell and potential #ow theory is used for #uid motions. The two theories are described
brie#y here; for details the reader is referred to the two works cited in the foregoing or to
PamKdoussis (2001).

A uniform cylindrical shell of length ¸, mean radius a and thickness h is considered
(Figure 1). The shell material is characterized by the density o

s
, Young's modulus E and

Poisson's ratio l. In terms of the displacements of the middle surface of the shell,
u(x, h, t), v(x, h, t) and w (x, h, t), in the axial, circumferential and radial directions, respective-
ly, the equations of motion are
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where ( )@ and ( ) > stand for aL( )/Lx and L( )/Lh, respectively, q is the radial #uid dynamic
loading per unit area of the middle surface, equal to the internal pressure,
k"h2/12a2, c"o

s
a2(1!l2)/E and + 2"a2L2/Lx2#L2/Lh2.

If the shell is clamped at one of its edges, there is neither displacement nor rotation,
so that

u"v"w"0 ,
Lw

Lx
"0. (2)
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On the other hand, if the end is simply supported, then

v"w"0,

M
x
"0 PwA#lw>>!lv>!u@"0,

u"0 or N
x
"0Pu@#lv>#lw!kwA"0.

(3)

The last boundary condition needs some explanation. A simply supported end may or may
not be restrained to move axially. If axial motion is not allowed, u"0; otherwise the axial
force N

x
"0.

Consider now the interaction of the shell with the #uid. It is assumed that the #ow is
inviscid and irrotational. Hence, there exists a scalar potential function W (x, h, r, t), from
which the velocity may be obtained through

V"$W. (4)

The potential W consists of two components: one due to the mean #ow associated with the
undisturbed #ow velocity ; in the x-direction, and the unsteady component U(x, h, r, t)
describing the perturbations caused by the shell motions. Hence,

W";x#U, (5)

so that the velocity components of the perturbed #ow "eld are given by

<
x
";#LU/Lx, <h"(1/r) LU/Lh, <

r
"LU/Lr. (6)

The unsteady pressure P is related to the velocity potential U by Bernoulli's equation for
unsteady #ow,

LU/Lt#1
2
<2#P/o"P

s
/o, (7)

where <2"<2
x
#<2

y
#<2

z
, P

s
is the stagnation pressure and o is the density of the #uid

#owing in the shell. Assuming small disturbances, one can obtain from equation (7)

p"!o (LU/Lt#; LU/Lx), (8)

where p, the di!erence between P and P
s
!1

2
o;2, is the perturbation pressure. Hence, the

perturbation pressure "eld can be determined if the potential U is known.
The governing equation for potential #ow is

+ 2W"0. (9)

Substitution of equation (5) into equation (9) yields

+ 2U"0, (10)

which must be solved using the boundary condition provided by the impermeability of the
surface of the shell, expressed mathematically as

<
r
"LU/LrD

r/a
"(Lw/Lt#; Lw/Lx). (11)

Since the boundary condition for U involves the radial displacement w of the shell,
equations (1) and (10) must be solved simultaneously using boundary conditions (2), (3) and
(11), and the loading given by equation (8).

3. METHODS OF SOLUTION

As mentioned earlier, two methods of solution are used: the travelling-wave method
presented by PamKdoussis & Denise (1972) and the standing-wave Fourier-transform ap-
proach by PamKdoussis et al. (1984). They are described below brie#y.
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3.1. TRAVELLING-WAVE METHOD

In this method, a solution is sought in the form of waves travelling along the shell, i.e., the
shell displacements have the form

u"A exp[i(jx/a#nh#ut)],

v"B exp[i(jx/a#nh#ut)],

w"C exp[i(jx/a#nh#ut)], (12)

where A,B, C are complex coe$cients, and n is the circumferential wavenumber. Similarly,
the potential U may be expressed as

U"R(r) exp[i(jx/a#nh#ut)], (13)

where R(r) is a function to be determined. Substitution of equation (13) into equation (10),
use of boundary condition (11) and the fact that R(r) must be "nite everywhere, yield the
solution for U in terms of modi"ed Bessel functions. Application of equation (8) then yields
the perturbation internal pressure as (PamKdoussis & Denise 1972)
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where I
n
(j) is the modi"ed Bessel function of "rst kind and of order n. Substitution of

equations (14) and (12) into equation (1) leads to three linear homogeneous equations in the
unknowns A,B,C. For nontrivial solution, the associated determinant must vanish. This
results in a transcendental equation in j (because of the modi"ed Bessel functions in the
pressure expression); hence, this characteristic equation has an in"nite number of roots,
implying that the total solution for u, v and w should be written as
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w"

=
+
j/1

C
j
exp[i(j

j
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However, the total number of boundary conditions at the two ends of the shell, represented
by equations (2) and (3), is eight; hence, a truncated set of eight j's are retained in equation
(15). Substitution of equation (15) into the boundary conditions (2) and (3) yields a set of
homogeneous linear algebraic equations in A

j
, B

j
and C

j
; again, for nontrivial solution of

these equations, the determinant of their coe$cients must vanish, which yields the fre-
quency equation. Starting from some initial value for the frequency, we iterate to "nd the
values of the (complex) frequency that satisfy this frequency equation.

3.2. STANDING WAVE SOLUTION

In this approach, the solution is expressed in the form
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where m and n are axial and circumferential wavenumber, respectively, while /
m
(x) are the

eigenfunctions of a uniform beam having the same support conditions as the shell. Due to
the orthogonality of the sin nh and cos nh functions, circumferential modes are decoupled
and hence there is no summation over n in equation (16).

The perturbation velocity potential is assumed to have the form

U (x, r, h, t)"W
n
(x, r) cos nh exp(iut), (17)

where W
n

is an unknown function associated with circumferential mode n and is to be
determined. Substituting equation (17) into equation (10) and taking its Fourier transform,
one obtains an ordinary di!erential equation whose solution can be written in terms of the
modi"ed Bessel functions of order n. Using boundary condition (11) and pressure expres-
sion (8), and taking the inverse Fourier transform, the expression for the radial load q can be
determined as
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=
+
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In the foregoing, a is the Fourier-transform variable, the asterisk denotes a transformed
quantity, I

n
is the modi"ed Bessel function of the "rst kind of order n, and I@

n
(z)"d I

n
(z)/dz.

Equations (16) and (18) can now be substituted into equations of motion (1) and
integrated over the length to yield a standard eigenvalue problem. Solution of this eigen-
value problem yields the complex frequencies.

4. RESULTS

To test the validity of the computer programs "rst, calculations were carried out for the
clamped}clamped (C}C) con"guration with the same parameters as those used by
PamKdoussis & Denise (1972) for a rubber}air system (i.e., a rubber shell conveying air) and by
PamKdoussis et al. (1984) for a steel}water system. These parameters are shown in Table 1. The
results are presented in nondimensional form using the following quantities:

uN "[E/Mo
s
(1!l2) a2N]~1@2u, ;M "[E/Mo

s
(1!l2)N]~1@2;. (21)

Figure 2 shows the variation of Re(uN ) and Im(uN ) with;M for the C}C rubber}air system.s It
may be noted that the imaginary part of uN is zero until the system loses stability by
divergence at the nondimensional speed of ;M "0)580, which matches with the results of
PamKdoussis & Denise (1972) to three signi"cant "gures. Subsequently, the second mode
becomes unstable by divergence at 0)606, followed immediately by coupled-mode #utter at
0)610.

The results for the C}C steel}water system are shown in Figure 3. These are almost
identical (to within 1)5%) to those obtained by PamKdoussis et al. (1984). Again, the imaginary
sThe parameters in Table 1 de"ne the systems considered completely. For brevity, we refer to them often as &&the
rubber}air system'', and so on.



TABLE 1
Shell and #uid parameters used in the calculations

System h (mm) a (mm) ¸ (m) o
s
(kg/m3) E (N/m2) l (*) o (kg/m3)

Rubber}air 0)178 7)9 0)204 895 3)4]105 0)47 1)21
Steel}water 0)5 90 1)0 7715 1)06]1011 0)30 998)6
Zolotarev 0)2 150 1)0 2800 7)2]1010 0)34 12)0

Figure 2. (a) The real and (b) the imaginary components of the dimensionless complex frequency, uN , as functions
of the dimensionless #ow velocity ;M , for a clamped}clamped rubber shell conveying air (the &&rubber}air system''),
as obtained by the travelling wave analysis for, n"2, and other parameters as in Table 1. r, m"1; h, m"2.
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part of the frequency is zero, until the system loses stability by divergence at ;M "0)026,
identical to that reported by PamKdoussis et al. Then, the system is restabilized brie#y, before
the onset of coupled-mode #utter, again as in PamKdoussis et al. Hence, the computer codes
developed seem to be reliable.



Figure 3. (a) The real and (b) the imaginary components of uN as functions of ;M for the steel}water system
de"ned in Table 1, analysed by the Fourier-transform method, for n"3: r, m"1; h, m"2.
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After the validation of the computer codes, the clamped}pinned (C}P) support condition
is considered. The real part of the frequency has a behaviour similar to that in the C}C case,
i.e., it vanishes when a certain critical #ow velocity is reached (divergence); this is followed
by a combination of the "rst two modes, corresponding to coupled-mode #utter. However,
the imaginary parts display an interesting and unusual behaviour. Figure 4 shows the
results obtained using the Fourier-transform method for the C}P support condition of the
three shell systems described in Table 1. Im(uN ) has been plotted using a highly expanded
scale; otherwise it will appear to be almost zero. It may be noticed that Im(uN ) is negative,
i.e., these shell systems appear to have negative damping and are therefore unstable for any
#ow velocity greater than zero! The magnitude of this negative damping increases with the
#ow velocity, almost linearly in the case of the rubber}air system. Similar results are also
obtained if the travelling-wave method is used with u"0 or N

x
"0.

On the other hand, if the boundary conditions are changed to P}C, the damping becomes
positive for any arbitrarily small #ow velocity, as shown for the steel}water system in



Figure 4. The imaginary components of the complex frequency uN , for di!erent clamped}pinned shell}#uid
systems, analysed by the Fourier-transform method: n, Zolotarev's system (n"2); T, PamKdoussis & Denise's
rubber}air system (n"2); h, the PamKdoussis et al. steel}water system (n"2). (a) For the "rst mode, m"1; (b) for

the second mode, m"2.
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Figure 5(b). The value of the positive damping for a given #ow velocity is equal to that of
the negative damping for the C}P case, as seen in Figure 5(a). These results are similar to
those presented in Zolotarev (1987). The imaginary parts are approximately three orders of
magnitude smaller than the real parts; among the three systems considered, the third
system, corresponding to the Zolotarev parameters, yields the largest Im(u), in rad/s.

The question arises as to whether these results represent a true physical phenomenon or
are simply a numerical artefact. In order to resolve this, an investigation of the possible
sources of numerical inaccuracy was carried out for the two methods*the Fourier-
transform approach and the travelling-wave method. In both methods, numerical error can
be reduced by using long double (quadruple) precision arithmetic. However, the major
source of inaccuracy in the Fourier-transform method is the approximate nature of the
eigenvalues used to calculate the beam eigenfunctions /

m
(x) appearing in equation (16).

These eigenvalues are the solution to a transcendental characteristic equation correspond-
ing to the support conditions of the shell and must be evaluated numerically. Accuracy of
this evaluation has a signi"cant e!ect on that of the solution of the overall problem, as
shown below. On the other hand, the accuracy of the travelling-wave solution depends
strongly on the tolerance imposed on the determination of the j's (nondimensional
wavenumbers) appearing in equation (12).



Figure 5. The imaginary component of uN versus ;M for the steel}water system, analysed by the Fourier-
transform method: (a) clamped}pinned; (b) pinned}clamped. r, m"1; h, m"2.
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Figure 6 shows the variation of Im(uN ) with the number of signi"cant digits to which the
beam eigenvalues have been calculated accurately; these results were obtained using the
Fourier-transform technique for the C}P rubber}water system for;M "0)3, Figure 6(a), and
0)4, Figure 6(b). The value of !Im(uN ), negative damping, is small (of the order of 10~5). It
is greater for the axial mode m"2 compared to m"1, and is larger for higher #ow velocity.
However, it is clear that for both axial modes, the negative damping decreases monotoni-
cally when the number of accurate signi"cant "gures in the beam eigenvalues increases from
8 to 18. It appears that, in the limit, the negative damping should reach zero, implying
a conservative undamped behaviour of the system. Hence, the occurrence of &&instability'' of
the C}P system for any small nonzero #ow velocity appears to be a numerical artefact and is
not likely to be realized in practice.s

The accuracy of the travelling-wave solution is examined next. The same C}P rubber}air
system is considered again. The changes in Im(uN ), when the tolerance in the solution of the
j's is tightened, are shown in Figure 7 for various values of the nondimensional velocity
;M . It is clear that Im(uN ) tends to zero for both m"1 and 2 when the tolerance is made
smaller. Hence, both solution methods lead to the conclusion that, for ideal calculations,
the clamped}pinned system is a conservative one involving zero damping until the system
loses stability by divergence for a su$ciently high #ow velocity.

As opposed to the clamped-pinned system, the pinned-clamlped system is better behaved
numerically; in calculations with the standing wave solution the imaginary part of the
frequency is found to be at least 30% closer to zero. This might be related to the form of the
sThus, the conclusion reached earlier by PamKdoussis et al. (1993) is upheld, although in that paper no exhaustive
study was undertaken of how close Im(uN ) really is to zero.



Figure 6. The e!ect of the number of signi"cant digits utilized for the determination of the j's on the computed
imaginary component of uN for the clamped-pinned rubber}air system (n"2), analysed by the Fourier-transform

method: (a) for ;M "0)3; (b) for ;M "0)4. T, m"1; h, m"2.
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eigenfunctions that makes the numerics very sensitive to precision in one case but not the
other.t

Some further calculations were conducted by the travelling wave method for a pinned-
clamped (P-C) system with reverse #ow (with #ow velocity !; instead of ; )*thus
physically for the C-P system considered before in Figure 7. However, the results show that
this P-C system is much less sensitive to imprecision: for the tightest tolerances of Figure 7,
in this case Im(u6 )"0$10~8 or better* i.e., very much closer to zero, or e!ectively zero.
Keeping in mind the order of magnitude of Re(u6 ), we conclude that the P-C system with
reverse ; and hence the C-P system also are conservative. The critical #ow velocities for
tAs reported in PamKdoussis (2001), a similar situation arises in the study of #uid-conveying pinned}clamped and
clamped}pinned pipes modelled as beams. Calculations with not so accurate j's yielded Im(u)O0 for arbitrarily
small ;, thereby suggesting that the system may be nonconservative! Signi"cantly, correctness to 4 signi"cant
"gures is quite su$cient for the pinned}clamped system to obtain Im(u)"0, but even 8 signi"cant-"gure
accuracy is not good enough for the clamped}pinned one.



Figure 7. The e!ect of tolerance in the calculation of the imaginary component of uN versus;M for the rubber}air
system, analysed by the travelling-wave method, for n"m"2: ], double precision; n, long double precision; h,

tolerance of 10~6; r, tolerance of 10~8.
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divergence and for subsequent coupled-mode #utter are the same for both clamped-pinned
and pinned-clamped systems.

Finally, it should be recalled that, in all the foregoing, structural damping was taken to be
zero. If even a small amount of dissipation is taken into account, however, the asymmetric
boundary condition &&#ow-induced damping'' disappears (in the sense of being overwhel-
med) since it is so small. In one case, for a clamped}pinned shell, Wong (2000) shows that
the inclusion of mechanical damping as small as 0)12% of the critical is su$cient to nullify
the e!ect of the numerically found #ow-induced negative damping.

5. ENERGY CONSIDERATIONS

The #uid forces acting on the system may be described by the perturbation pressure,
equation (14) in the context of the travelling-wave solution, which may be rewritten
(PamKdoussis 1987) as

p"!oaI(n, j) A
L
Lt
#;

L
LxB

2
w, (22)

where I (n, j) is the functional of the Bessel functions in equation (14). Hence, the rate of
work done by the #uid on the shell in the course of oscillatory motions is

d=

dt
"!P

L

0
P

2n

0

Lw

Lt GoaI(n, j) CA
L
Lt

#;
L
LxB

2
wDH a dhdx. (23)

For convenience, we can write w(x, h, t)"wN (x, t) cos nh. Hence, for harmonic oscillations,
the work done over a period of oscillation, ¹, is

D="!ona2 P
T

0
P

L

0

LwN
Lt GI(n, j) CA

L
Lt
#;

L
LxB

2
wN DH dxdt.
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Then, integrating by parts (PamKdoussis 1998, Section 3.2), this gives

D="!ona2;I(n, j) P
T

0
CA

LwN
LtB

2
#; A

LwN
LxB A

LwN
Lt BD

L

0

dt. (24)

It is, therefore, clear that for supported ends, such that radial displacement and hence
(LwN /Lt)"0 at x"0 and ¸, one obtains D="0 and reaches the conclusion that the system
is conservative.

This may be thought to clinch the argument. Not necessarily and unequivocally so,
however, similarly to the question of existence of coupled-mode #utter of pipes with
supported ends (PamKdoussis 1998, Section 3.4). For that problem, energy arguments such as
the above suggest that #utter is impossible, since D="0, whereas eigenfrequency calcu-
lations show it to be quite possible (and with large Im(u)).s Happily, in the case of the shells
considered here, both approaches point to the same conclusion.

6. CONCLUSIONS

The dynamics and stability of pinned}clamped and clamped}pinned shells subjected to
internal #ow were considered. Two methods were used for the analysis: the travelling-wave
method and the Fourier-transform approach. To start with, the two methods were applied
to clamped}clamped systems, and the results obtained were compared to the existing ones.
The agreement was quite good. Next, the clamped}pinned and pinned}clamped systems
were considered. Both methods suggested that the clamped}pinned systems are subjected to
negative damping for any arbitrarily small #ow velocity greater than zero. The pinned}
clamped systems, on the other hand, are subjected to positive damping.

In order to ascertain the validity of these results, a careful analysis of sources of numerical
errors was carried out. Furthermore, all subsequent calculations were carried out in
quadruple precision. The major contribution to inaccuracy of the results from the Fourier-
transform method comes from the inaccuracies in the beam eigenvalues. The calculations
were repeated for the clamped}pinned rubber}air system by varying systematically the
number of accurate signi"cant digits in the beam eigenvalues. It was noted that the
magnitude of the negative damping decreased rapidly and monotonically with an increase
in the number of accurate signi"cant digits. This indicates that, in the limit, the damping will
approach zero.

The most important source of error in the travelling-wave method is the inaccuracy in the
determination of j's appearing in equation (12). Calculations were repeated with the values
of j's obtained with various tolerances. It was noticed that, when tighter tolerances are used
to determine the j's, the magnitude of the negative damping of the clamped}pinned system
reduces monotonically. Again, in the limit, the damping should become zero.

The interesting thing about this numerical artefact is that, in some cases at least, it mimics
true, physical dynamical behaviour, as seen in Figures 4 and 7 for the rubber}air system.
Thus, unlike typical numerical problems when a steady or random oscillatory deviation
from the true value (in this case Im(uN )"0) occurs, what is obtained here is a more or less
linear variation of Im(uN ) with ;M , which seems physically plausible.

Finally, by means of energy considerations, the work done by the #uid on the shell in the
course of periodic oscillations is found to be naught. Hence, no energy transfer from the
#uid to the shell, or vice versa, can occur*at least in the context of linear dynamics.
s In that case, the question was settled by nonlinear theory (Holmes 1978).
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It is concluded that both clamped}pinned and pinned}clamped systems are conservative;
the small negative damping of the former system and the positive damping of the latter
in the numerical results, for any arbitrarily small #ow velocity, are simply numerical
artefacts.
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